a2 United States Patent

Quan

US009235436B2

US 9,235,436 B2
*Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(30)

Nov. 12, 2010

(1)

(52)

METHOD AND APPARATUS OF ACCESSING
DATA OF VIRTUAL MACHINE

Applicant: Alibaba Group Holding Limited,
Grand Cayman (KY)

Inventor: Xiao Fei Quan, Hangzhou (CN)

Assignee: Alibaba Group Holding Limited,

Grand Cayman (KY)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/607,980

Filed: Jan. 28, 2015

Prior Publication Data

US 2015/0193253 Al Jul. 9, 2015

Related U.S. Application Data

Continuation of application No. 13/502,314, filed as
application No. PCT/US2011/060271 on Nov. 10,
2011, now Pat. No. 8,996,809.

Foreign Application Priority Data
(CN) e 20101 0542916

Int. Cl1.
GO6F 12/00
GO6F 9/455
GO6F 12/08
U.S. CL
CPC GO6F 9/45558 (2013.01); GOGF 12/08
(2013.01); GOGF 12/0866 (2013.01); GOGF

(2006.01)
(2006.01)
(2006.01)

12/0897 (2013.01); GOGF 2009/45583
(2013.01); GO6F 2212/1016 (2013.01); GO6F
2212/152 (2013.01); GOGF 2212/154 (2013.01)
(58) Field of Classification Search
CPC .. GOG6F 9/45558; GOGF 12/08; GOG6F 12/0866
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,446,141 Bl 9/2002 Nolan et al.
7,606,868 B1 10/2009 Le et al.
7,743,209 B2 6/2010 Takada et al.
7,793,307 B2 9/2010 Gokhale et al.
(Continued)
OTHER PUBLICATIONS

The Chinese Office Action mailed Aug. 16, 2013 for Chinese patent
application No. 2010105429161, a counterpart foreign application of
U.S. Appl. No. 13/502,314, 5 pages.

(Continued)

Primary Examiner — Aracelis Ruiz
(74) Attorney, Agent, or Firm — Lee & Hayes, PLLC

(57) ABSTRACT

A methods and device for accessing virtual machine (VM)
data are described. A computing device for accessing virtual
machine comprises an access request process module, a data
transfer proxy module and a virtual disk. The access request
process module receives a data access request sent by a VM
and adds the data access request to a request array. The data
transfer proxy module obtains the data access request from
the request array, maps the obtained data access request to a
corresponding virtual storage unit, and maps the virtual stor-
age unit to a corresponding physical storage unit of a distrib-
uted storage system. A corresponding data access operation
may be performed based on a type of the data access request.

20 Claims, 11 Drawing Sheets

's 800

Receiving a Data Access Request

l

Adding the Data Access Request to a
Request Array

|

the Request Array

l

Virtual Storage

[Obtaining the Data Access Request from

Mapping the Virtual Storage to a Physical
Storage

|

[Obtaining Data from the Physical Storage

Mapping the Data Access Request to a I/_ 804

US 9,235,436 B2
Page 2

(56)

8,024,506
2006/0064697
2008/0291827
2009/0157942
2009/0307688
2010/0217916
2010/0228915
2010/0274987
2011/0047344
2011/0167218
2011/0276754
2012/0017209
2012/0030404

References Cited

U.S. PATENT DOCUMENTS

Bl
Al*
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al*
Al

9/2011
3/2006
11/2008
6/2009
12/2009
8/2010
9/2010
10/2010
2/2011
7/2011
11/2011
1/2012
2/2012

Agesen et al.

Kagietal.

Xiong et al.
Kulkarni
Pafumi et al.
Gao et al.
Ogihara et al.

Subrahmanyam et al.

Eguchi
Matsunami et al.
Bish et al.

Ben-Yehuda et al. ...

Yamamoto et al.

2012/0096206 Al 4/2012 Talamacki et al.
OTHER PUBLICATIONS

The Extended Furopean Search Report mailed Oct. 7, 2014 for Euro-

... 718/103 pean Patent Application No. 11839861.9, 8 pages.

Office Action for U.S. Appl. No. 13/502,314, mailed on Oct. 25,
2013, Xiao Fei Quan, “Method and Apparatus of Accessing Data of
Virtual Machine,” 15 pages.

Office Action for U.S. Appl. No. 13/502,314, mailed on Jun. 11,
2014, Xiao Fei Quan, “Method and Apparatus of Accessing Data of
Virtual Machine,” 15 pages.

The PCT Search Report and Written Opinion mailed Mar. 16, 2012
for PCT application No. PCT/US11/60271, 7 pages.

........ 718/1

* cited by examiner

U.S. Patent

Jan. 12, 2016

Sheet 1 of 11

US 9,235,436 B2

F

19. 2

(Computing Device
100
' N Processor(s)
Memory 104 105
Access Request Process
Module
101 Input/Output
Interfaces
106
\
Data Tl\r/fg‘;l‘:leé Proxy Virtual Disk
102 103
— Network
Interface
107
\\
.
u
F1g. 1
'S 200
)))
Virtual %Om,p”t]icng Distributed
Machine Acc:\s”:iigo\;M Storage
(VM) : : Data System

US 9,235,436 B2

Sheet 2 of 11

Jan. 12, 2016

U.S. Patent

(u) o019 e1EQ

i<

(1) 001 ereQ

abel01g |enuIn
Jo (u) ayoe

<

36EI0IS

_ PeInquisig

J

abeli01g |BnuIA
Jo (1) ayoeD

.

———

azIg 9be.i0I1g
9zI1S Ble(
SS8.ppy [eniu]

adA] 1s8nbay
—

oy

2/

JSaNDaY $S300V efeq

——

azIg abe.o)g
9zIS ejeq
$S3IPPY [BHIU|

adA] 1senbay
—

2]

JSoNbIY SS30Y EEQ

Bl ISIERN)

ABIY 159nboy

J

U.S. Patent Jan. 12, 2016 Sheet 3 of 11 US 9,235,436 B2

's 400
Access Request Process Second-level Cache Module
Module 404
101 -
~
Data Transfer Proxy Module Virtual Disk
102 103

Fig. 4

Access Request Process
Module
101

N
Data Transfer Proxy Module Virtual Disk
102 103

Third-level Cache Module
505

Fig. 5

U.S. Patent Jan. 12, 2016 Sheet 4 of 11 US 9,235,436 B2

'S 600
(Virtual Disk A
103
e ™\
Export Module
607
\\
Mapping Partition
s N
Dada Snapshot Module
606 N
\\
Virtual Disk Partition
of Original Data
Access Request Process Module
101
~
Virtual Disk Partition
of Snapshot Data
~
Data Transfer Proxy Module
102
\\

Fig. 6

U.S. Patent Jan. 12, 2016 Sheet 5 of 11 US 9,235,436 B2

Virtual Disk (T+)

Mapping Partition
\,

7 N
Virtual Disk Partition of

~

Original Data i (Distributed Storage System
.
e ™)
Virtual Disk Partition of { Physical Storage Unit of
L Snapshot Data Original Data
\\
: Physical Storage Unit of
. Snapshot Data (1)
. .)]
Virtual Disk (Tn) -
|
' N
Mapping Partition Physical Storage Unit of
_ Snapshot Data (n)
\\

' ~
Virtual Disk Partition of
Original Data

N

\\

e ~
Virtual Disk Partition of
Snapshot Data

N

N

U.S. Patent Jan. 12, 2016 Sheet 6 of 11 US 9,235,436 B2

(] \
—_—
(0]
o
o

co

Receiving a Data Access Request

A

oo
O
N

Request Array

y

Obtaining the Data Access Request from
the Request Array

y

o
o
=

Mapping the Data Access Request to a
Virtual Storage

[Adding the Data Access Request to a

Y

o
()
a

Mapping the Virtual Storage to a Physical
Storage

A 4

806

T 11T

[Obtaining Data from the Physical Storage

Fig. 8

U.S. Patent Jan. 12,2016

Receiving a Data
Access Request

|

Second-level
Cache Stores the
Data

901

Yes

e

Request

-), —904
Obtaining the Data Access |~

V,

y

()
Mapping the Data Access |—909
L Request to Virtual Storage)

y

\
[Mapping the Virtual Storage |—

to Physical Storage

906

A 4

[Obtaining the Data

— 907

A 4

Creating the Second-level 908
Cache and Storing the Data

Fig. 9

Sheet 7 of 11

US 9,235,436 B2

Reading the Data from

903
he Second-level Cache I

U.S. Patent Jan. 12, 2016 Sheet 8 of 11 US 9,235,436 B2

1000
/_

Obtaining a Data 1001
Access Request

Third-level Cache
Stores the Data

1003
Reading the Data from
the Third-level Cache

e “
004
Mapping the Data Access /_1

Request to a Virtual Storage
\. J

y

4 N
Mapping the Virtual Storage /‘1005

to a Physical Storage
. J

A 4

[Obtaining the Data I 006

A 4

\
Creating the Third-level /—1 007
Cache and Storing the Data
W,

U.S. Patent

Jan. 12, 2016

Sheet 9 of 11

Second-level

Virtual
Machine
(VM)

Cache Module

Virtual Machine

4 R R
Computing Device)

Computing Device

Second-level
Cache Module

y

~\

(1)

Virtual Machine

;(Virtual Disk (1)

US 9,235,436 B2

Physical
Storage of
Distributed

System

S

[e —
L]

(n)

~
:(Virtual Disk (n)

Physical
Storage of
Distributed

System

Fig. 12

S

US 9,235,436 B2

Sheet 10 of 11

Jan. 12, 2016

U.S. Patent

p———— -

¢l "bL

4

W

psInquisiq 10 8belo)s |eoisAud ;

Wo1sAg

\

d
Bl

3sid [eniIn

800A3(] bunndwo
| 590ASQ bunAWo) |

J
suIyoB [BNUIA

-~ ————

- —————————————

e Ry

ﬁ %sIQ [BNHIA u

90IA8(bunndwo
| 3omsg bupndwoy

)
auUIYoBIN [BNUIA

- ———— -

US 9,235,436 B2

Sheet 11 of 11

Jan. 12, 2016

U.S. Patent

b LA

ﬁ 0 8bel01g |esIsAyd u

g sbeioig |esisAyd

Jn ﬁ v abelo)s |eoisAyd u

&A x

WAISAS Sbel0lS paInguIsiq

\ 4 A 4
ﬁ 1 %sia _mst_>u ﬁ 0 3s!d [eNUIA u
A Y N

() 901A8(g bunndwo?)

(awsc uﬁ exsiq

)

(T SUIGOBIN [eMIA

(awma) (ewa)

(1) SUIYIBIN [ENJIA

US 9,235,436 B2

1
METHOD AND APPARATUS OF ACCESSING
DATA OF VIRTUAL MACHINE

CROSS REFERENCE TO RELATED PATENT
APPLICATIONS

This application is a continuation of and claims priority to
U.S. patent application Ser. No. 13/502,314, now U.S. Pat.
No. 8,996,809, filed Apr. 16, 2012 which is a national stage
application of an international patent application PCT/US11/
60271, filed Nov. 10, 2011, which claims priority to Chinese
Patent Application No. 201010542916.1, filed on Nov. 12,
2010, entitled “METHOD AND DEVICE FOR ACCESS-
ING VIRTUAL MACHINE DATA,” which applications are
hereby incorporated by reference in their entirety.

TECHNICAL FIELD

This disclosure relates to the field of computer technolo-
gies. More particularly, the disclosure relates to a method and
device for accessing data on a virtual machine.

BACKGROUND

A virtual machine (VM) is a computer system that simu-
lates functions of a complete hardware system by using soft-
ware, and operates in an isolated environment. By imple-
menting VM technologies, a physical computer may emulate
one or more virtual computers. Like a physical computer, a
VM may, for example, install operating systems as well as
applications and accesses the Internet resources.

In general, data of a VM is stored in a virtual disk of the
VM. The virtual disk is stored in a physical disk of a local
physical computer in the form of mirror documents, logic
virtual volumes, logic disks or logic disk partitions. The VM
may access the data by accessing the physical disk of the local
computer. This may present problems, for example, when the
local computer is shut down or damaged.

SUMMARY

This disclosure provides methods and devices for access-
ing virtual machine (VM) data. In some aspects, a device may
comprise an access request process module, a data transfer
proxy module, and a virtual disk. The access request process
module receives a data access request that is sent by a VM,
and adds the data access request to a request array. The data
transfer proxy module obtains the data access request from
the request array, maps the data access request to a corre-
sponding virtual storage unit, and maps the virtual storage
unit to a corresponding physical storage unit of a distributed
storage system. In the distributed storage system, a corre-
sponding data access operation may be performed based on a
type of the data access request. In some aspects, the device
may further comprise a second-level cache module, a third-
level cache module, and/or a data snapshot module.

BRIEF DESCRIPTION OF THE DRAWINGS

The Detailed Description is described with reference to the
accompanying figures. The use of the same reference num-
bers in different figures indicates similar or identical items.

FIG. 1 is a schematic block diagram showing details of an
exemplary computing device for accessing data of a virtual
machine (VM).

FIG. 2 is a schematic diagram showing an exemplary envi-
ronment for accessing data of a VM.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a schematic block diagram showing an exemplary
mapping relationship.

FIG. 4 is a schematic block diagram showing details of
another exemplary computing device for accessing data of a
VM.

FIG. 5 is a schematic block diagram showing details of yet
another exemplary computing device for accessing data of a
VM.

FIG. 6 is a schematic block diagram showing details of'still
another exemplary computing device for accessing data of a
VM.

FIG. 7 is a schematic block diagram showing an exemplary
mapping relationship between virtual disks and physical stor-
age.
FIG. 8 is a flowchart showing an exemplary process of
accessing data of a VM.

FIG. 9is aflowchart showing another exemplary process of
accessing data of a VM.

FIG. 10 is a flowchart showing yet another exemplary
process of accessing data of a VM.

FIG. 11 is a schematic block diagram showing details of an
exemplary system for accessing data of a single VM.

FIG. 12 is a schematic block diagram showing details of an
exemplary system for accessing data of parallel VMs.

FIG. 13 is a schematic block diagram showing details of an
exemplary system for implementing a VM migration.

FIG. 14 is a schematic block diagram showing details of an
exemplary system for accessing data of VMs by implement-
ing shared storage.

DETAILED DESCRIPTION

As discussed above, under conventional virtual machine
(VM) technologies, the state of local physical computers may
affect security and reliability of data of VMs. Because of
security and reliability concerns, development and applica-
tions of VM techniques are dramatically limited. This disclo-
sure describes various exemplary ways of improving security
and reliability of accessing VM data, for example, by map-
ping virtual storage of a virtual disk to physical storage of a
distributed storage system. This disclosure may provide a
data transmission channel between a VM and a distributed
storage system, and, therefore, provide overall, consistent,
complete, high-efficient, secured, and compatible data access
services.

FIG. 1 is a schematic block diagram showing details of the
exemplary computing device 100 for accessing data ofa VM.
The computing device 100 may be configured as any suitable
device. In one exemplary configuration, the computing
device 100 includes one or more processors 105, input/output
interfaces 106, network interface 107, and memory 104.

The memory 104 may include computer-readable media in
the form of volatile memory, such as random-access memory
(RAM) and/or non-volatile memory, such as read only
memory (ROM) or flash RAM. The memory 104 is an
example of computer-readable media.

Computer-readable media includes volatile and non-vola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules, or other data. Examples of computer storage media
includes, but is not limited to, phase change memory
(PRAM), static random-access memory (SRAM), dynamic
random-access memory (DRAM), other types of random-
access memory (RAM), read-only memory (ROM), electri-
cally erasable programmable read-only memory (EEPROM),
flash memory or other memory technology, compact disk

US 9,235,436 B2

3

read-only memory (CD-ROM), digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other non-transmission medium that can be used to store
information for access by a computing device. As defined
herein, computer-readable media does not include transitory
media such as modulated data signals and carrier waves.

Turning to the memory 104 in more detail, the memory 104
may store an access request process module 101, a data trans-
fer proxy module 102 and a virtual disk 103, and one or more
applications for implementing all or a part of accessing data
of'a VM (not shown in FIG. 1). The access request process
module 101 receives a data access request from a VM and
adds the data access request to a request array. In some
embodiments, the data access request maps to a virtual stor-
age unit of the virtual disk 103, and the virtual storage unit
maps to a physical storage unit of a distributed storage system
(See FIG. 2).

The data transfer proxy module 102 obtains the data access
request from the request array, maps the data access request to
a corresponding virtual storage unit, and maps the virtual
storage unit to a corresponding physical storage unit of the
distributed storage system. In some embodiments, the data
transfer proxy module 102 may, based on a type of the data
access request, perform operations on corresponding data on
the physical storage unit of the distributed storage system.

Suppose that the type of obtained data access request is
“write data” and that the mapped physical storage unit infor-
mation is sent to the distributed storage system. As a result,
the distributed storage system operates “write data” based on
the physical storage unit information. If the type of obtained
data access request is “read data,” the data is read from the
distributed storage system based on the physical storage unit
information, and the data can be fed back to the VM.

FIG. 2 is a schematic diagram showing an exemplary envi-
ronment 200 that may include a virtual machine, a computing
device (e.g., the computing device 100) and a distributed
storage system. Data in a virtual disk of a VM can be saved in
physical disks of multiple physical computers in a distributed
storage system based on the mapping techniques. As a result,
a backup associated with the VM data can be implemented,
and the security and the reliability of the stored VM data can
be improved.

FIG. 3 is a schematic block diagram showing an exemplary
mapping relationship 300. In some embodiments, the data
access request in the request array is mapped to a virtual
storage unit in a virtual disk, and the virtual storage unit
further is mapped to a physical storage unit in a distributed
storage system. As shown in FIG. 3, the data access request
may include a request type, an initial address of data, a data
size, and an address size. The request type indicates a
requested operation on the data (e.g., read, write or delete).
The initial address of data indicates an initial address of the
data in the virtual storage unit of the virtual disk of to which
the data access request accesses. A virtual storage size of data
may be obtained based on the initial address of data and the
size of data. The storage size indicates a storage size for
caching data associated with the data access request in
memory of a physical computer associated with the VM.

A virtual storage unit mapped to a data access request can
be determined based on the initial address of the data and the
size of the data associated with the data access request. The
virtual storage unit is configured to save the data associated
with the data access request. Based on the virtual storage unit
and the associated mapping relationship, a physical storage
unit of the distributed storage system can be determined. The
physical storage unit associated with the data access request is

5

10

15

20

25

30

35

40

45

50

55

60

65

4

determined based on the initial address and the size of the data
associated with the data access request. A data access channel
from the VM to the distributed storage system is then estab-
lished, and, therefore, the data access from the VM to the
distributed storage system can be implemented.

In some embodiments, the data transfer proxy module 102
may obtain individual data access requests from a request
array, for example, after getting notification from the access
request process module 101. The data transfer proxy module
102 may actively access the request array periodically to
obtain data access requests. The data access requests are then
firstly mapped to corresponding virtual storage units, which
are further mapped to corresponding physical storage units of
adistributed storage system. The physical storage units can be
determined based on the mapping techniques. As accessing
VM data described in this disclosure requires merely a map-
ping relationship without copying data, system resources can
be saved by using less time and storage.

In some embodiments, a request array may correspond to a
thread with respect to multithreading applications. Suppose
that 16 threads are concurrently activated and that each thread
implements functions of the data transfer proxy module 102.
As a result, 16 data transfer proxy modules can be concur-
rently activated in the computing device 100 for accessing
data of a VM.

FIG. 4 is a schematic block diagram showing details of an
exemplary computing device 400 that may include, similar to
the device of FIG. 1, the access request process module 101,
the data transfer proxy module 102, and the virtual disk 103.
In this FIG. 4 implementation, the computing device 400
further includes a second-level cache module 404. In some
embodiments, the access request process module 101 deter-
mines whether a second-level cache stores the data associated
with the data access request after the access request process
module 101 receives the data read request from a VM. If yes,
the data can be read from the cache directly. If no, the access
request process module adds the data access request to a
request array. After the data transfer proxy module 102 reads
data, the second-level cache module 404 creates a second-
level cache slot to store the data.

For example, when the access request process module 101
receives a data read request (e.g., a data access request indi-
cating to read data A), the access request process module 101
searches a second-level cache. If the second-level cache
stores data A, data A is read from the second-level cache
directly. Otherwise, the data read request is added to the
request array so that data A can be read from a distributed
storage system based on the mapping techniques. After the
data transfer proxy module 102 reads data A, the second-level
cache module 404 creates a second-level cache slot to store
data A. In some embodiments, the second-level cache slot is
created in advance, and a cache item A is created in the
second-level cache slot for data A. The cache item A created
for data A is then added to a cache pool of the second-level
cache. Therefore, when the data transfer proxy module 102
reads new data, the second-level cache module 404 creates a
new cache item in the second-level cache and adds the new
cache item into the cache pool of the second-level cache.

In some embodiments, the second-level cache is physical
memory of a local physical computer, expediting accessing
data of a VM. In some embodiments, data in a virtual disk of
a VM can be saved in physical disks of multiple physical
computers of a distributed storage system based on the map-
ping techniques, improving security and reliability of data
stored in a VM. In some embodiments, reading data and

US 9,235,436 B2

5

caching the data in a front-end strategy system can be con-
ducted at the same time to further increase the speed of
accessing data of a VM.

FIG. 5 is a schematic block diagram showing details of an
exemplary computing device 500 that. Similar to the devices
of FIGS. 1 and 4, may include the access request process
module 101, the data transfer proxy module 102, and the
virtual disk 103. In the FIG. 5 implementation, the device 500
also includes a third-level cache module 505. In some
embodiments, the data transfer proxy module 102 determines
whether the cache stores the data associated with a data access
request after the data transfer proxy module 102 obtains the
data read request from the request array. Ifyes, the data can be
read from the cache slot directly. If no, the data transfer proxy
module 102 maps the data read request to a corresponding
virtual storage unit and maps the virtual storage space to a
corresponding physical storage unit. After the data transfer
proxy module 102 reads data, the third-level cache module
505 creates a third-level cache slot to store the data. In some
embodiments, the data transfer proxy module 102 may fur-
ther perform operations on the data associated with the data
access request.

For example, when the data transfer proxy module 102
obtains a data read request (e.g., a data access request indi-
cating to read data C), the data transfer proxy module 102
searches a third-level cache. If the third-level cache retains
data C, data C is read from the third-level cache directly.
Otherwise, the obtained data read request is mapped to a
corresponding virtual storage unit that is further mapped to a
corresponding physical storage unit. After the data transfer
proxy module 102 reads data C, the third-level cache module
505 creates a third-level cache slot to store data C. In some
embodiments, the third-level cache slot is created in advance,
and a cache item C is created in the third-level cache slot for
data C. The cache item C is then added to a cache pool of the
third-level cache. Therefore, when the data transfer proxy
module 102 reads new data, the third-level cache module 505
creates a new cache item in the third-level cache and adds the
new cache item into the cache pool of the third-level cache.

In some embodiments, the third-level cache slot is physical
memory of a local physical computer, expediting accessing
dataofa VM. In some embodiments, the computer device 500
may include both the second-level cache module 404 and the
third-level cache module 505. In this situation, the access
request reaches the access request process module 101 first,
and processing memory data is faster than processing disk
data. As a result, the second-level cache slot may be located in
physical memory of a local physical computer, and the third-
level cache slot may be located in a physical disk of a local
physical computer to further expedite accessing dataofa VM.
In some embodiments, data in a virtual disk of a VM can be
saved in physical disks of multiple physical computers of a
distributed storage system based on the address mapping.
Therefore, security and reliability of stored VM data can be
improved. In some embodiments, reading data and caching
the data in a back-end strategy system can be conducted at the
same time to further increase the speed of accessing data of a
VM.

FIG. 6 is a schematic block diagram showing details of
another possible implementation of an exemplary computing
device 600. The computing device 600 includes an access
request process module 101, a data transfer proxy module
102, a virtual disk 103, and a data snapshot module 606. As
shown in FIG. 6, the virtual disk 103 may include a virtual
disk partition of original data, a virtual disk partition of snap-
shot data and a mapping partition. In some embodiments, data
in a virtual disk can be saved as snapshot data at a certain time

25

30

40

45

55

6

to backup the data in other storage. The data snapshot module
606 obtains a virtual storage slot of the virtual disk partition of
original data and a virtual storage slot of the virtual disk
partition of snapshot data from the mapping partition.

In some embodiments, the computing device 600 may
include the export module 607 that maps the virtual storage
slot of the original data and the virtual storage slot of the
snapshot data that is obtained by the data snapshot module
606 to corresponding physical storage units of a distributed
storage system.

In some embodiments, the computing device 600 includes
an import module (not shown) that maps physical storage
units of the distributed storage system to virtual disk parti-
tions of original data and virtual disk partitions of snapshot
data, after an import request is received. For example, when
original data and snapshot data in a distributed storage system
need to be exported to other VMs, the import module may
map physical storage units of the distributed storage system to
virtual disk partitions of the original data and virtual disk
partitions of the snapshot data in other VMs. As a result, the
data is exported to other storage systems.

FIG. 7 is a schematic block diagram showing an exemplary
mapping relationship between virtual disks and physical stor-
age. In some embodiments, virtual storage units of the virtual
disk partition of original data and the virtual disk partition of
snapshot data are retained in the mapping partition. The vir-
tual storage units are obtained from the mapping partition
when the data snapshot module 606 receives a data snapshot
request. The export module 607 maps the virtual storage units
to physical storage units of a distributed storage system so
that the original data and the snapshot data can be obtained
from the physical storage units of the distributed storage
system, and that a data snapshot at a certain time can be
obtained based on the original data and the snapshot data.

In some embodiments, the sector codes in the device for
accessing VM data may include Vm_id, Image_id, Vbd_id,
Par_id and Cell_id. Vm_id (32-bit) is the number of a VM;
Image_id (32-bit) is the number of an associated mirrored
document and can indicate imported snapshot data; Vbd_id
(8-bit) is the number of a virtual hard drive; Par_id (8-bit) is
the number of a partition; and, Cell_id (64-bit) is the number
of'a sector. Vm_id, Image_id, Vbd_id and Par_id are config-
ured by a managing system to include information associated
with relationship and attribute of a computing device for
accessing VM data. In some embodiments, the front-end
strategy system combines these codes to uniquely identify
sector locations of distributed storage units after receiving the
request from an upper-level document system. Then, read/
write operations on the sectors are performed based on these
codes.

FIGS. 8-10 are flowcharts showing exemplary processes of
accessing data of a VM. The processes are illustrated as a
collection of blocks in logical flowcharts, which represent a
sequence of operations that can be implemented in hardware,
software, or a combination. For discussion purposes, the pro-
cesses are described with reference to the computing devices
100, 400, 500 and/or 600 shown in FIGS. 1 and 4-6, the
computing environment 200 shown in FIG. 2, and the map-
ping relationships 300 and 700 shown in FIGS. 3 and 7.
However, the processes may be performed using different
environments and devices. Moreover, the environments and
devices described herein may be used to perform different
processes.

FIG. 8 is a flowchart showing an exemplary process of
accessing data of a VM. At 801, the access request process
module 101 receives a data access request that is sent by a
VM. At 802, the access request process module 101 adds the

US 9,235,436 B2

7

data access request to a request array. The data access request
maps to a virtual storage unit in a virtual disk, and the virtual
storage unit maps to a physical storage unit in a distributed
storage system. At 803-805, the data transfer proxy module
102 obtains the data access request from the request array,
maps the data access request to a corresponding virtual stor-
age unit, and maps the virtual storage unit to a corresponding
physical storage unit. At 806, the transfer proxy module 102
may obtain data from the physical storage unit. In some
embodiments, 801-806 may be repeated until all data access
requests in the request array are processed.

The distributed storage system may operate a correspond-
ing data access operation in the physical storage unit based on
a type of data access request. For example, if the type of the
obtained data access request is “write data”, the distributed
storage system operates “write data” based on the physical
storage unit information that is sent to the distribution storage
system from the computing device 100. If the type of the
obtained data access request is “read data”, the data is read
from the distributed storage system based on the physical
storage unit information. As a result, the data can be fed back
to the VM associated with the date access request.

FIG. 9 is a flowchart showing an exemplary process of
accessing data of a VM. At 901, the access request module
101 receives a data access request thatis sentby aVM. At 902,
the access request module 101 determines whether a second-
level cache unit stores the data associated with the data access
request. If the data is stored (i.e., the “yes” branch from 902),
the data transfer proxy module 102 directly reads the data at
903. If the data is not stored (i.e., the “no” branch from 902),
the data transfer proxy module 102 obtains the data access
request from a request array after the data access request is
added to the request array at 904. At 905 and 906, the data
transfer proxy module 102 maps the data access request to a
corresponding virtual storage unit, and maps the virtual stor-
age unit to a corresponding physical storage unit. At 907, the
data transfer proxy module 102 obtains the data associated
with the data access request. At 908, the second-level cache
module 404 creates a second-level cache slot to store the data.
In some embodiments, 901-908 may be repeated until all data
access requests in the request array are processed.

FIG. 10 is a flowchart showing an exemplary process of
accessing data of a VM. In some embodiments, to expedite
data access processes, a third-level cache may be created after
a corresponding data read operation is performed in the
mapped physical storage units based on the associated data
read request. At 1001, the data transfer proxy module 102
obtains a data access request from a request array. At 1002,
the data transfer proxy module 102 determines whether a
third-level cache stores the data associated with the data
access request. [fthe data is stored (i.e., the “yes” branch from
1002), the data transfer proxy module 102 reads the data
directly from the third-level cache at 1003. If the data is not
stored in the third-level cache (i.e., the “no” branch from
1002), the data transfer proxy module 102 maps the data
access request to a virtual storage unit, and maps the virtual
storage unit to a physical storage unit of a distributed storage
system. At 1006, the data transfer proxy module 102 obtains
the data from the distributed storage system. At 1007, a third-
level cache module creates a third-level cache slot to store the
data. In some embodiments, 1001-1007 may be repeated until
all data access request in the request array are processed.

In some embodiments, the processes described above may
further include obtaining snapshot data associated with the
data access request. For example, the data snapshot module
606 may obtain a virtual storage unit of a virtual disk partition
of original data and a virtual storage unit of a virtual disk

40

45

8

partition of snapshot data from a mapping partition of the
virtual disk after a snapshot request is received, map the
virtual storage unit of the original data and the virtual storage
unit of the snapshot data to corresponding physical storage
units of the distributed storage system after an export request
is received.

In some embodiments, reading and caching the data asso-
ciated with the data access request in the front-end strategy
system can be conducted at the same time. For example, after
the access request process module 101 receives the next data
access request, the data associated with the data access
request can be read from a cache that stores the data, expe-
diting accessing data of a VM. In some embodiments, reading
and caching the data associated with the data access request in
the back-end mechanism system can be conducted at the
same time. For example, after the data transfer proxy module
102 obtains the next data access request, the data can be read
from a cache that stores the data, expediting accessing data of
a VM.

In some embodiments, the processes described above may
be performed in different environments and devices, for
example, a single virtual machine start, a multiple-machine
parallel virtual machines start, a virtual machine migration,
and/or shared storage. FIGS. 11-14 show four different
embodiments to illustrate these four cases.

FIG. 11 is a schematic block diagram showing details of an
exemplary system 1100 for accessing data of a single VM.
The system 1100 may include a computing device, similar to
the devices of FIGS. 1, 4 and 5, a VM, and physical storage of
a distributed system. By implementing a single virtual
machine start, the start time and the response speed of a VM
are improved.

FIG. 12 is a schematic block diagram showing details of an
exemplary system 1200 for accessing data of parallel VMs.
The system 1200 may include a computing device, similar to
the devices of FIGS. 1, 4 and 5, a plurality of parallel VMs,
and physical storage of a distributed system. By implement-
ing a multiple-machine parallel virtual machines start, the
start time and the response speed of a VM are improved too.

FIG. 13 is a schematic block diagram showing details of an
exemplary system 1300 for implementing a VM migration.
The System 1300 may include a plurality of computing
devices, similar to the devices of FIGS. 1, 4 and 5, a plurality
of corresponding VMs, and physical storage of a distributed
system. By implementing a virtual machine migration, the
amount of data migration is reduced and the migration speed
is increased.

FIG. 14 is a schematic block diagram showing details of an
exemplary system 1400 for accessing data of VMs by imple-
menting shared storage. The system 1400 may include a
plurality of computing devices, similar to the devices of
FIGS. 1, 4 and 5, a plurality of corresponding VMs, and a
plurality of physical storage units of distributed systems (i.e.,
physical storage A, B and C). In the system 1400, the distrib-
uted systems are installed on servers, and each server node
stores data in local hard drives (not shown). Each server node
may construct a storage area network (SAN) by employing
the plurality of computing devices of FIG. 14 for accessing
VM data. Accordingly, SAN shared software may be config-
ured to implement the shared storage devices and to manage
data development access in a group. By way of example and
not limitation, the SAN shared software may include pNFS/
GFS2, and CIFS for Windows system.

The embodiments in this disclosure are merely for illus-
trating purposes and are not intended to limit the scope of this
disclosure. A person having ordinary skill in the art would be
able to make changes and alterations to embodiments pro-

US 9,235,436 B2

9

vided in this disclosure. Any changes and alterations that
persons with ordinary skill in the art would appreciate fall
within the scope of this disclosure.

What is claimed is:

1. A device comprising:

memory including at least a virtual storage unit;

one or more processors coupled to the memory;

an access request process module, stored in the memory

and executable by the one or more processors, that:

receives a data access request from a virtual machine,

determines whether data associated with the data access
request is stored in a cache storage,

obtains the data associated with the data access request
in an event that the data associated with the data
access request is stored in the cache storage, and

adds the data access requestto arequest array in an event
that the data associated with the data access request is
not stored in the cache storage; and

a data transfer proxy module, stored in the memory and

executable by the one or more processors, that:

obtains the data access request from the request array,
and

maps the data access request to the virtual storage unit
that corresponds to a physical storage unit of'a storage
system.

2. The device as recited in claim 1, wherein the data transfer
proxy module further performs a data access operation on the
data associated with the data access request based on a request
type that is included in the data access request.

3. The device as recited in claim 1, further comprising a
cache module stored in the memory and executable by the one
or more processors that creates a cache slot of the cache
storage to store the data associated with the data access
request.

4. The device as recited in claim 1, wherein the cache
storage comprises a local memory or a local physical disk of
a local computing device.

5. The device as recited in claim 1, further comprising a
data snapshot module stored in the memory and executable by
the one or more processors, wherein the virtual disk com-
prises a virtual disk partition of original data, a virtual disk
partition of snapshot data and a mapping partition, and the
data snapshot module obtains a virtual storage unit of the
virtual disk partition of the original data and a virtual storage
unit of the virtual disk partition of the snapshot data from the
mapping partition.

6. The device as recited in claim 5, further comprising an
export module, stored in the memory and executable by the
one or more processors, that maps the virtual storage unit of
the original data and the virtual storage unit of the snapshot
data to physical storages units of the storage system after an
export request is received.

7. The device as recited in claim 5, further comprising an
import module, stored in the memory and executable by the
one or more processors, that maps physical storages units of
the storage system to the virtual storage unit of the original
data and the virtual storage unit of the snapshot data after an
import request is received.

8. The device as recited in claim 5, wherein the data snap-
shot module further obtains the original data and the snapshot
data from physical storages units.

9. A computer-implemented method comprising:

receiving a data access request from a virtual machine;

determining whether a cache stores data associated with
the data access request;

in an event that the cache stores the data associated with the

data access request,

20

25

30

35

40

45

65

10

obtaining the data associated with the data access
request from the cache; and
in an event that the cache does not store the data associated
with the data access request,
placing the data access request in a request array;
obtaining the data access request from the request array;
mapping the data access request to a virtual storage unit
of a virtual disk;
mapping the virtual storage unit to a physical storage in
a distributed storage system; and
performing a data operation associated with the data
access request.
10. The computer-implemented method as recited in claim
9, wherein the data access request includes a request type, an
initial address of data storage, and a data size.
11. The computer-implemented method as recited in claim
9, wherein the performing comprises performing the data
operation based on a request type of the data access request.
12. The computer-implemented method as recited in claim
9, further comprising creating a cache slot to store the data
associated with the data access request after obtaining the
data from the distributed storage system if the data is not
stored in the cache.
13. The computer-implemented method as recited in claim
9, further comprising:
obtaining a virtual storage unit of a virtual disk partition of
original data and a virtual storage unit of a virtual disk
partition of snapshot data from a mapping partition after
a snapshot request is received;

mapping the virtual storage unit of the original data and the
virtual storage unit of the snapshot data to physical stor-
age units ofthe distributed storage system after an export
request is received; and

obtaining the original data and the snapshot data from the

distributed storage system.

14. One or more computer-readable media encoded with
instructions that, when executed by one or more processors,
cause the one or more processors to perform acts comprising:

receiving a data access request from a virtual machine;

obtaining data from a physical storage unit of a storage
system based on the data access request;

creating a front-end cache slot to store the data in a front-

end cache storage in response to determining that the
front-end cache storage does not stores the data; and
creating a back-end cache slot to store the data in a back-
end cache storage in response to determining that the
back-end cache storage does not stores the data.

15. The one or more computer-readable media as recited in
claim 14, wherein the obtaining of the data, the creating of the
front-end cache slot and the creating of the back-end cache
slot are performed simultaneously.

16. The one or more computer-readable media as recited in
claim 15, wherein the front-end cache slot is located in
memory of a local computing device, and the back-end cache
slotis located in a physical disk of the local computing device.

17. The one or more computer-readable media as recited in
claim 14, the acts further comprising:

obtaining a virtual storage unit of a virtual disk partition of

original data and a virtual storage unit of a virtual disk
partition of snapshot data from a mapping partition after
receiving a data snapshot request;

mapping the virtual storage unit of the original data and the

virtual storage unit of the snapshot data to physical stor-
ages units of a distributed storage system after receiving
an export request; and

obtaining the original data and the snapshot data from the

distributed storage system.

US 9,235,436 B2

11

18. The one or more computer-readable media as recited in
claim 14, the acts further comprising performing an operation
on the data in the physical storage unit based on a type of the
data access request.

19. The one or more computer-readable media as recited in
claim 14, wherein the data access request comprises includes
a request type, an initial address of data storage, and a data
size.

20. The one or more computer-readable media as recited in
claim 14, wherein the data access request maps to a virtual
storage unit of a virtual disk that maps to the physical storage
unit of the storage system.

#* #* #* #* #*

10

12

